
UNIVERSIDADE DE SÃO PAULO
Instituto de Física de São Carlos
Trabalho de Conclusão de Curso

Extração de características em escoamentos via
Decomposição Ortogonal Própria

João Victor Dell Agli Floriano

Trabalho de conclusão de curso apresentado ao
Instituto de Física de São Carlos da Universi-
dade de São Paulo para obtenção do título de
Bacharel em Física Computacional. Orienta-
dor: Prof. Dr. Afonso Paiva - Instituto de
Ciências Matemáticas e de Computação

São Carlos - SP
2023

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Resumo
Este trabalho de conclusão de curso traz um estudo sobre o uso de um dos métodos de Decom-
posição Ortogonal Própria existentes, a SVD, como ferramenta para a análise de escoamentos
obtidos por simulações de fluidos. Aplicou-se o algoritmo em um conjunto correspondente a
uma simulação de 1499 frames de um campo de densidade de um escoamento, que possibilitou
o estudo do comportamento de suas estruturas espaciais com relação à dimensão temporal.
Também foi possível, a partir das matrizes retornadas pelo método, realizar uma redução sig-
nificativa de sua complexidade, chegando a 82%.
Palavras-chave: POD. SVD. Escoamentos. Simulação de Fluidos.

1

Sumário
1 Introdução 3

2 Materiais e Métodos 4
2.1 A decomposição SVD . 4
2.2 PCA . 7

2.2.1 A teoria . 7
2.2.2 A dedução do método PCA 1D . 8

2.3 Aspectos Computacionais . 9
2.4 O Clássico Problema das Eigenfaces . 12

3 Resultados 16
3.1 A Aplicação em Escoamentos . 16

4 Conclusão 21

2

1 Introdução
A Decomposição Ortogonal Própria, DOP, ou POD em inglês, é um termo guarda-chuva

que descreve um conjunto de métodos de análise de dados baseado na sua fatoração em con-
juntos de autovalores e autovetores. Esse conjunto, composto pela Análise de Componentes
Principais (PCA), a Decomposição de Karnuhen-Loève (KLD) e a Decomposição em Valores
Singulares (SVD) (1), nem sempre foi ou é entendido como tal, apesar da extrema similaridade
de seus métodos, visto que cada um deles foi independentemente desenvolvido ao longo dos
séculos XIX e XX, sendo o SVD o mais antigo deles, tendo sido estabelecido para matrizes
reais em 1870 por Beltrami e Jordan (1).

Figura 1: PCA, KLD e SVD como três métodos da POD.
Fonte: Elaborada pelo autor.

A utilidade dos métodos de POD se estende a inúmeras áreas das ciências no geral, sendo
o PCA o mais famoso dos três, com uso que vai desde, por exemplo, estudo de amostras fósseis
(2), até o estudo da variação de estados de temperatura e pressão de dados meteorológicos
(2), sendo aplicado na redução da dimensionalidade de dados de muitas dimensões. Em 1991,
Matthew Turk e Alex Pentland introduziram um método de identificação de rostos baseado
na decomposição de um conjunto de faces nas que ficaram bem conhecidas como “Eigenfaces”
(3), um espaço de autovetores usados como base para comparação de projeções entre rostos do
conjunto original e rostos os quais se desejava identificação.

Apesar de ser aplicado em várias áreas, é em dinâmica de fluidos computacional que as
PODs encontram grande utilidade, sendo inclusive usualmente associadas a essa área. Aqui, as
PODs são aplicadas na decomposição de complexos campos de velocidade e densidade, sejam
de simulações, sejam de dados reais, em conjuntos de autofunções determinísticas, podendo
inclusive ser usadas para desacoplar a dimensão espacial da temporal de um conjunto de dados
(4). Baseando-se nessa última aplicação, este projeto teve como objetivo estudar a aplicação
de um dos métodos de POD, a SVD, em alguns conjuntos de dados de simulações de fluidos.

3

2 Materiais e Métodos

2.1 A decomposição SVD
A Decomposição em Valores Singulares, ou SVD, é, como descrito anteriormente, um

método antigo de fatoração de matrizes. Dada uma matriz M real, de tamanho n × m, sua
decomposição SVD terá o seguinte formato:

M = UΣV T (1)

A qual:

• U : Matriz n × n a qual suas colunas são os autovetores de MMT , também chamados de
vetores singulares à esquerda

• V : Matriz m × m a qual suas colunas os autovetores de MT M , também chamados de
vetores singulares à direita

• Σ: Matriz n × m a qual suas entradas diagonais são as raízes quadradas dos autovalores
não nulos de MT M ou MMT , também chamadas de valores singulares.

Essas três submatrizes, por sua vez, possuem inúmeras interpretações, geralmente depen-
dendo do contexto a qual a decomposição foi aplicada. Uma interpretação comum, no contexto
o qual M é uma transformação linear, é que essas três submatrizes são uma fatoração da
transformação original em três operações elementares: uma rotação no subespaço de V , um
dimensionamento por Σ, e uma rotação no subespaço de U .

Figura 2: Sub-transformações de M.
Fonte: https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

No contexto deste trabalho, a decomposição SVD será aplicada à amostras de campos,
sendo eles escalares ou vetoriais, da forma F(x, t) representando o escoamento de um fluido
em um intervalo de tempo e domínio espacial específico, chamado de snapshot. Considerando
um conjunto de dados de um escoamento no domínio [0, x] × [0, y] × [0, t], discretizados em um
vídeo de dimensões (n, m, f), sendo n e m a quantidades de elementos em x e y, e f o número

4

de frames em t, para aplicarmos a decomposição nesse conjunto, devemos primeiro condensar
as dimensões espaciais discretizadas de x e y em um vetor de apenas uma dimensão. Tendo
cada frame ti condensado em um vetor de tamanho n × m, podemos empilhar esses vetores
coluna seguidamente em uma matriz M , que terá enfim um tamanho (h, f), sendo h = n × m.

M =


...
t0 t1 . . . tf
...

 (2)

Com o nosso conjunto de dados no formato de uma matriz comum, a decomposição pode
enfim ser feita. As três submatrizes terão o seguinte formato:

M = U(x) · Σ · V T (t) (3)
Em particular, a SVD desempenhará um papel além de apenas fatorar essa matriz de

dados: ela desacoplará as dimensões temporal e espacial (4), as quais serão representadas pelas
matrizes U e V T respectivamente. Nesse caso, a matriz U será composta pelos f autovetores
coluna espaciais, e a matriz V T será composta pelos f autovetores coluna transpostos temporais:


...
t0 t1 . . . tf
...

 =


...

u1 u2 . . . uh
...

 ·



σ1 0 ... 0
0 σ2 ... 0
...
0 0 ... σf
...
0 0 ... 0


·


. . . vT

1 . . .
. . . vT

2 . . .
...

. . . vT
f . . .

 (4)

Se traduzindo em uma combinação linear dos produtos dos vários elementos de U e V T ,
com os valores singulares de Σ como coeficientes:


...
t0 t1 . . . tf
...

 = σ1


. . . vT

1 . . .
...

u1
...

 + . . . + σf


. . . vT

f . . .
...

uf
...

 (5)

Em relação a essas matrizes, é comum que surja uma dúvida importante: Se a matriz Σ é
composta pela raiz quadrada dos autovalores de MT M , os quais são os mesmos autovalores de
MMT , e considerando que essas duas matrizes podem possuir postos diferentes se M for uma
matriz retangular, como esses autovalores são os mesmos se uma tem mais autovalores que a
outra? A resposta para isso é simples: Apenas os autovalores até o menor posto entre as duas
matrizes são relevantes, o resto dos autovalores são nulos.

Isso pode inclusive ser verificado, resguardados os limites numéricos do contexto o qual
o método está sendo aplicado, pela progressão do valor dos autovalores, do mais relevante ao
menos relevante, que usualmente segue uma progressão semelhante a 1

x
, como no exemplo da

figura 3, retirado da decomposição de um conjunto de dados específico.

5

Figura 3: Progressão do autovalores.
Fonte: Elaborada pelo autor.

Como pode ser verificado acima, a quantidade de autovalores próximos de zero é muito
grande. Essa característica é crucial para a utilidade desses métodos de POD, pois a partir
dela pode-se construir um subespaço de complexidade muito menor se comparado ao subespaço
original.

No exemplo da figura 3, se realizarmos uma soma dos autovalores até que essa soma
totalize o valor de 99%, chegamos ao seguinte resultado presente na figura 4.

Figura 4: Autovalor limite a qual a soma dos anteriores corresponde a 99% dos dados.
Fonte: Elaborada pelo autor.

Apenas 129 autovalores correspondem a 99% dos dados. Essa quantidade é aproxima-
damente 6, 79% do total. Esse dado constitui uma das principais aplicações das POD, que
é a redução da complexidade do problema, pois sabendo-se que essa quantidade pequena de
autovalores corresponde a esse quase total valor dos dados, seleciona-se apenas essa quantidade
para análise e reconstrução dos mesmos.

6


...
t0 t1 . . . tf
...

 =


...

u1 u2 . . . un
...

 ·


σ1 0 ... 0 . . . 0
0 σ2 ... 0 . . . 0
...
0 0 ... σn . . . 0

 ·


. . . vT

1 . . .
. . . vT

2 . . .
...

. . . vT
f . . .

 (6)

Sendo n, nesse caso, a quantidade de autovalores desejada para reconstrução do espaço.

2.2 PCA
2.2.1 A teoria

O método PCA é outra abordagem interessante da decomposição ortogonal, sendo equi-
valente ao SVD, porém vindo de um contexto diferente. Apesar de ter sido inventada inde-
pendentemente por Hardold Hotelling em 1933 (5), o qual cunhou seu nome, o método foi
originalmente derivado por Karl Pearson (6) em 1901, como um análogo do Teorema dos Ei-
xos Principais, que descreve um conjunto de linhas ortogonais que cruzam um elipsoide ou
hiperboloide como sendo seus “eixos principais”.

Assim como o teorema descrito acima, a ideia do método PCA é encontrar os “compo-
nentes principais” de um conjunto de dados abstrato, sendo estes as direções, ortogonais entre
si, as quais os dados tem a maior projeção. Essa ideia pode ser traduzida geometricamente no
ato de procurar as retas principais que passam “pelo meio” da nuvem de dados.

Figura 5: Eixos principais de um conjunto de dados.
Fonte: Elaborada pelo autor.

Assim como na SVD, sabendo as direções com a maior projeção a calculados pelo método,
é possível calcular também qual a porcentagem de sua contribuição nos dados originais, sendo
ela a contribuição do componente de interesse dividido pela soma da contribuição de todos
os componentes. Sabendo essas porcentagens, conseguimos ordenar as maiores contribuições,
nos permitindo definir quais são os componentes mais e menos significativos, que por sua vez

7

também permitem uma filtragem semelhante ao apresentado anteriormente, que reconstrói os
dados em menos dimensões.

Um passo a mais existente nas aplicações de PCA, além da filtragem, é da rotação do
conjunto de dados na direção das componentes principais, para que os eixos de referência
coincidam com os mesmos, e a análise dos dados seja facilitada.

2.2.2 A dedução do método PCA 1D

Usemos como exemplo o caso da projeção em uma dimensão. Supondo que queiramos
projetar um conjunto de dados de p dimensões em uma reta só que passe a partir da origem
“pelo meio” exato desses dados, representada pelo vetor unitário w⃗. A reta que melhor se
encaixará nesse casos será a reta a qual as distâncias entre ela e cada ponto será a mínima (que
também significa que será a reta a qual a projeção dos dados na mesma será máxima). Ou
seja, temos que dar um jeito de minimizar a média das distâncias ponto-reta de todos os dados
(também conhecida como Erro Quadrático Médio):

min(MSE(w⃗)) = min(1
n

n∑
i=1

||x⃗i − (x⃗i · w⃗)w⃗||2) (7)

A partir dessa minimização descobriremos qual deve ser a direção da reta que cumpre
esses requisitos. Abrindo o termo interno do somatório acima, temos:

||x⃗i − (x⃗i · w⃗)w⃗||2 = x⃗i · x⃗i − (x⃗i · w⃗)2 (8)
Que, no MSE, é:

MSE(w⃗) = 1
n

(
n∑

i=1
x⃗i · x⃗i − (x⃗i · w⃗)2) = 1

n
(

n∑
i=1

||x⃗i||2 −
n∑

i=1
(x⃗i · w⃗)2) (9)

Para que o MSE seja minimizado, a somatória das projeções na reta deve ser maximizada.
Reescrevendo a mesma como:

1
n

n∑
i=1

(x⃗i · w⃗)2 = (1
n

n∑
i=1

x⃗i · w⃗)2 + V ar[x⃗i · w⃗] (10)

Como a média da soma dos dados é zero, então a média das projeções também será zero,
portanto, só sobra a variância a ser maximizada. Sendo assim, encontrar a reta que passa “pelo
meio” dos dados significa encontrar a reta a qual há a maximização da variância da projeção
dos dados nessa reta.

Basta agora maximizarmos a variância das projeções para encontrar a reta. Para facilitar
na visualização, façamos os cálculos na forma matricial, empilhando os dados x⃗i em uma matriz
x de dimensões n × p. A variância, como visto acima, pode ser escrita então como:

V ar[x⃗i · w⃗] = σ2 = 1
n

n∑
i=1

(x⃗i · w⃗)2 (11)

= 1
n

(xw)T (xw) = 1
n

wT xT xw (12)

= wT xT x
n

w = wT vw (13)

8

Para que a maximização, precisamos garantir que ela resultará em um vetor w⃗ tal que
ele será unitário, pois essa é uma das condições definidoras do nosso problema. Para que essa
garantia seja feita, introduziremos o uso de um multiplicador de Lagrange λ associado à uma
restrição wT w = 1 que junto com o problema original constituirá um novo objeto, que aí sim
será maximizado:

L(w, λ) = wT vw − λ(wT w − 1) (14)
Derivando parcialmente:

∂L

∂λ
= wT w − 1 (15)

∂L

∂w
= 2vw − 2λw (16)

Igualando as duas derivadas a zero para encontrar os pontos extremos, temos:

wT w = 1 (17)

vw = λw (18)
Que nos mostra uma coisa muito importante. A reta que define a variância máxima

das projeções é a reta definida por um autovetor da matriz de covariância v, no caso, aquele
associado ao maior autovalor. Portanto, basta encontrar os autovalores e autovetores de v que
calcularemos o componente principal desejado dos dados.

A componente principal calculada resolverá o caso para projeção em uma dimensão, porém
esses resultados não se restringem a apenas isso. Sendo a matriz v uma matriz de covariân-
cia, ela é simétrica e positiva, nos dizendo que todos seus autovetores serão ortogonais com
autovalores positivos. Cada autovetor será uma componente principal dos dados originais.

2.3 Aspectos Computacionais
Como visto anteriormente, alguns passos devem ser seguidos para se obter uma imple-

mentação de SVD funcional:

1. Calcular MT M .

2. Calcular MMT .

3. Calcular os autovalores e autovetores de 1.

4. Calcular os autovalores e autovetores de 2.

5. Ordenar os autovalores e autovetores calculados por maior relevância e dispô-los em U ,
Σ e V T

Poderia ter-se implementado cada passo numericamente com seus devidos métodos já
bem conhecidos, porém isso envolveria tempo gasto de maneira desnecessária, podendo inclu-
sive resultar em uma aplicação lenta, visto que as devidas otimizações estado-da-arte muito
provavelmente não seria usadas. Como o objetivo do projeto era de se estudar a aplicação de

9

PODs, optou-se por usar uma implementação já pronta, presente na biblioteca numpy, dentro
do módulo de álgebra linear linalg.

1 # Como importar svd
2 from numpy.linalg import svd

Seu uso se da da seguinte maneira:
1 # Como importar svd
2 U, Sigma , Vt = svd(M)

Coloca-se uma matriz M , a qual se deseja fazer a decomposição SVD, e recebe-se as três
matrizes oriundas da decomposição. Um passo a mais no seu uso que acelera os cálculos das
três matrizes, visto que muitas vezes estaremos lidando com matrizes de tamanho considerável,
é de atualizar a variável full_matrices, que por padrão é True, para False. Essa atualização
fará com que a função evite calcular todos os autovalores e autovetores da decomposição, ou
seja, irá calcular apenas aqueles até o número de autovalores não-nulos, definidos pelo menor
posto da matriz original.

1 # Como importar svd
2 U, Sigma , Vt = svd(M, full_matrices = False)

Além da biblioteca numpy, também foram usadas nesse projeto as bibliotecas pandas e
matplotlib.pyplot, para importação e plotação dos resultados, respectivamente.

1 # Importando pandas e matplotlib .pyplot
2 import pandas as pd
3 import matplotlib .pyplot as plt

Usando-se dessas bibliotecas, pode-se enfim desenvolver um procedimento para tratar os
dados desejados. O procedimento segue a simples ordem:

1. Recebe-se o conjunto de imagens o qual deseja-se analisar em um array.

2. Achata-se as imagens em vetores coluna unidimensionais, empilhando-os em uma matriz.

3. Aplica-se a decomposição SVD.

Um exemplo de programa que realiza esses passos é:
1 # Importacao dos dados com pandas
2 rawdata = pd. read_csv ("/ caminho /para/os/dados.csv")
3
4 # Conversao dos dados crus em um np.array
5 data = np.array(rawdata)
6
7 # Decomposicao SVD pelo numpy
8 U, S, Vt = svd(data_d , full_matrices = False)

A partir da decomposição, pode-se escolher que direção tomar com as informações rece-
bidas nas três submatrizes. Pode-se tentar, por exemplo, reconstruir uma imagem de fora do
conjunto original a partir dos autovetores obtidos.

Sendo I uma imagem desconhecida e E = V T a matriz do auto-espaço calculado do
conjunto de imagens, a reconstrução dessa imagem é feita de seguinte maneira:

10

1. Projetamos a imagem desconhecida no auto-espaço gerado de forma a obter um vetor
com cada entrada sendo os coeficientes de projeção:

Ω = IET (19)

2. Multiplicamos esses coeficientes por cada autovetor do auto-espaço, gerando assim a com-
binação linear dos mesmos:

I ′ = ΩE (20)

No caso acima, quanto mais autovetores escolhermos, melhor será a reconstrução, apesar
de não necessariamente perfeita. Pode-se também tentar identificar uma imagem presente no
conjunto por meio dos autovetores. Para realizar essa comparação, devemos primeiro calcular
o vetor com os coeficientes da projeção da imagem desconhecida no auto-espaço calculado. O
vetor, da forma:

Ω =



w1
w2
w3
...

wk

 (21)

Deverá ser subtraído dos vetores das projeções de cada imagem original do conjunto, da
maneira:

Di = ||Ω − Ωi|| (22)
A menor distância corresponderá à imagem mais parecida, porém não necessariamente

corresponderá à uma imagem necessariamente igual. Podemos ainda definir uma tolerância,
para qual imagens com distância abaixo de certa tolerância T corresponderão à mesma pessoa
da imagem desconhecida, porém para os fins desse projeto, isso não será feito.

Caso desejemos fazer uma filtragem por autovalores relevantes, e por exemplo, reconstruir
o conjunto com menos elementos, uma aplicação que pode economizar espaço de memória,
deveremos seguir os passos seguintes:

1. Calcula-se os autovalores elevando os elementos de Σ ao quadrado.

2. Seleciona-se a quantidade de autovalores significativos desejados.

3. Reconstrói-se os dados a partir desse número inferior de autovalores.

1 # Filtragem dos autovalores
2 s = 0
3 m = 0
4 percent = 0.99
5 while(s <= percent):
6 s = np.sum(contribs [:m])
7 m += 1

11

Para a reconstrução, usou-se duas funções auxiliares. A primeira, normalize, renormaliza
a imagem dentro de um intervalo especificado. A segunda to_image, converte uma imagem
para o intervalo de um inteiro sem sinal, que é o intervalo de [0, 255], intervalo usado para a
atual codificação de imagens:

1 # Funcoes uteis
2 def normalize (img : np.ndarray , min , max):
3 ’’’Function that converts an image to the given desired range.

’’’
4 return ((img - np.min(img))/(np.max(img) - np.min(img)))*(max -

min) + min
5
6 def to_image (img):
7 return normalize (img , 0, 255).astype(np.uint8)

Que enfim são aliadas na reconstrução do conjunto:
1 # Reconstrucao do conjunto
2 def rebuild_frame (U, Sigma , Vt , frame , slice):
3 proj2 = np.matrix(U[frame , :]) * np.matrix(np.diag(Sigma)[:, :

slice])
4
5 return to_image (proj2 * np.matrix(Vt[: slice , :]))

2.4 O Clássico Problema das Eigenfaces
Como teste inicial desse algoritmo, resolveu-se um clássico problema, proposto inicial-

mente por Sirovich e Kirby em 1987 (7), e posteriormente aprimorado por Turk e Pentland em
1991. A partir do desejo de se encontrar bases de dimensão baixas de imagens de rostos, Siro-
vich e Kirby haviam proposto o uso de PCA para a formação de uma base a partir de conjunto
pré-coletado dos mesmos, base a partir da qual se reconstruiria esse mesmo conjunto por meio
de combinações lineares de seus elementos, como mostrando anteriormente. Turk e Pentland
teriam enfim, em 1991, apresentado uma proposta consistente de detecção de rostos por meio
dessa técnica, que ficou então conhecido como o “Método de Eigenfaces para reconhecimento
de rostos”. O método consiste, de maneira resumida, em:

1. Escolher um conjunto de rostos que será base para essa identificação.

2. Realizar a decomposição ortogonal desse conjunto, obtendo-se a matriz com os autovetores
dos rostos, a base dos “auto-rostos”.

3. Classificar cada rosto do conjunto original projetando-o na base de autovetores. O vetor
resultante da projeção nessa matriz será a “identificação” desse rosto.

4. Obtendo-se essa base com as identificações, basta agora calcular o vetor da projeção do
rosto que deseja se identificar. Com essa identificação, realiza-se uma comparação, que
pode ser um simples cálculo da distância entre esses dois vetores, entre a identificação
calculada e as identificações de cada rosto da base. A melhor comparação corresponderá
ao rosto a qual desejava-se identificar.

12

Para testar esse método, usou-se como base de dados uma amostra de imagens de rostos
disponibilizada, na época, no site da Universidade de Boston. Essa base de dados continha fotos
de rostos de 38 pessoas diferentes, cada uma com, em média, 64 fotos de ângulos de iluminação.
Para testar a possibilidade de reconstrução de rostos de fora do conjunto, escolheu-se apenas
30 dessas 38 pessoas para os cálculos.

Figura 6: Alguns dos rostos disponíveis no conjunto de dados.
Fonte: Universidade de Boston.

Figura 7: Cada rosto possui sub-fotos de ângulos de iluminação diferentes.
Fonte: Universidade de Boston.

Aplicando a SVD nesse conjunto, obtemos a matriz com os “auto-rostos”, cada um dis-
posto como uma coluna da matriz.

Figura 8: Primeiros quatro auto-rostos.
Fonte: Elaborado pelo autor.

13

Podemos então testar se conseguimos reconstruir uma imagem fora do conjunto original
apenas com esses auto-rostos.

Figura 9: Rosto de fora do conjunto.
Fonte: Universidade de Boston.

Dado o rosto 9 de fora do conjunto, calculando sua reconstrução pelo método demonstrado
anteriormente, obtemos o resultado representado pela figura 10.

Figura 10: Reconstrução com n autovetores.
Fonte: Universidade de Boston.

Testemos agora o método de identificação de rostos, projetando um rosto de fora do
conjunto. Para algumas imagens escolhidas, obteve-se os seguintes resultados, representados
pelas imagens 11 e 12.

Figura 11: Exemplo de identificação que deu certo.
Fonte: Elaborado pelo autor.

14

Figura 12: Exemplo de identificação que deu errado.
Fonte: Elaborado pelo autor.

É possível verificar pelo segundo exemplo que nem todo rosto será corretamente identi-
ficado. Se rodarmos esse algoritmo para todo o conjunto de rostos, poderemos verificar quais
foram identificados corretamente.

Figura 13: Acertos e erros do algoritmo.
Fonte: Elaborado pelo autor.

Na figura 13, verde corresponde aos rostos corretamente identificados, e amarelo os iden-
tificados erroneamente. Pode-se verificar assim as áreas do conjunto as quais o algoritmo falha,
que por sua vez correspondem a ângulos de iluminação os quais produzem quantidade signifi-
cativa de sombra sobre o mesmo.

15

3 Resultados

3.1 A Aplicação em Escoamentos
Para demonstrar a aplicação das PODs em escoamentos, usou-se um conjunto de dados

gerado independentemente. Esse conjunto constitui em uma simulação do escoamento de um
fluido, representado por frames de um campo escalar correspondente à sua densidade, a qual
é armazenada em cada pixel da imagem. Essa simulação possui 1500 frames de dimensão
(100, 100). É importante pontuar, antes de continuar com esse estudo, que todas as imagens
da simulação aqui mostradas terão seu valor normalizado no intervalo [0.0, 1.0], mas não neces-
sariamente correspondem a valores dentro desse intervalo.

Figura 14: Simulação do escoamento de um Fluido.
Fonte: Elaborado pelo autor.

Primeiro, achatou-se os frames em vetores de 10000 entradas, e os empilhou em colunas,
rendendo uma matriz (10000, 1499). Aplicando a decomposição SVD nesse conjunto, obteve-se
as três submatrizes, com as seguintes dimensões:

• U : (10000, 1499)

• Σ : (1499, 1499)

• V T : (1499, 1499)

Como descrito anteriormente, U corresponde aos autovetores espaciais, Σ aos autovalores,
e V T aos autovetores temporais. Seus autovalores normalizados tem as seguintes contribuições,
representadas na figura 15.

16

Figura 15: Porcentagem da contribuição dos autovalores.
Fonte: Elaborado pelo autor.

Cada um desses autovalores corresponde aos seguintes autovetores, em ordem de signifi-
cância.

Figura 16: Primeiros e mais relevantes autovetores e suas contribuições.
Fonte: Elaborado pelo autor.

Analisando o conjunto, representado por alguns modos iniciais em 16, nota-se uma carac-
terística peculiar: O modo de maior densidade, correspondente ao primeiro autovetor, possui
valores pequenos no meio, aonde a estrutura da fumaça mais se concentrava, e valores grandes
fora dessa região. Fora de contexto, esse resultado não deveria fazer sentido, pois se cada au-
tovetor acima corresponde aos modos de maior densidade, e a densidade deve possuir valores
positivos, por que o modo de maior densidade possui essa inversão? Essa dúvida bem moti-
vada é respondida analisando o primeiro modo conjuntamente com seu respectivo autovetor
temporal.

17

Figura 17: Comparação entre o primeiro modo espacial e sua “variação” no tempo.
Fonte: Elaborado pelo autor.

Essa comparação levanta um ponto importante desta análise a qual deve ser sempre
praticado: o estudo dos modos espaciais deve vir sempre acompanhado dos modos temporais.
No exemplo da figura 17, verificamos que a variação temporal do primeiro e mais “energético”
modo tem valores negativos ao longo de toda a simulação, que ao serem multiplicados pelo
modo espacial, invertem seu valor.

Figura 18: Comparação entre o segundo modo espacial e sua variação no tempo.
Fonte: Elaborado pelo autor.

Figura 19: Comparação entre o terceiro modo espacial e sua variação no tempo.
Fonte: Elaborado pelo autor.

18

Se realizarmos o procedimento de filtragem procurando pela quantidade de autovalores
correspondente a 99%, obtemos o resultado representado pela figura 20

Figura 20: Autovalor limite correspondente a 99% do conjunto.
Fonte: Elaborado pelo autor.

Pelo que foi calculado, 86 autovalores correspondem a 99% do conjunto. Se reconstruirmos
um frame qualquer com apenas essa quantidade de autovalores, obtemos os seguintes frames
na figura 21.

Figura 21: Reconstrução de um frame qualquer com 86 autovalores.
Fonte: Elaborado pelo autor.

É possível verificar por 21 que a reconstrução conseguiu obter, de fato, uma representação
muito parecida com o frame original. Isso pode ser respaldado pela ordem da diferença absoluta
entre o original e a reconstrução, que é pequena se comparada aos valores de densidade do frame.

Usando o exemplo acima para calcular a eficiência de compressão desse algoritmo, consi-
derando que se tratava de uma matriz de tamanho (10000, 1499) a qual selecionou-se apenas
86 autovalores, o necessário para reconstruir o conjunto será:

• U (10000, 86)

• Σ (86)

• V T (1499, 1499)

19

Somando essa quantidade, obtemos 3.107.087 números a serem guardados, que se compa-
rados à quantidade original, 17.238.500, representa uma redução de 81, 97% no espaço armaze-
nado.

20

4 Conclusão
Os métodos de POD configuram uma importante e poderosa ferramenta de análise de

dados. Sua característica de aplicação a posteriori, ou seja, diretamente a um conjunto de
dados já obtido, configura uma interessante versatilidade, pois para o método, pouca ou ne-
nhuma diferença fazem as restrições e regras analíticas inerentes ao comportamento analisado,
as quais podem inclusive serem reveladas a partir da análise dos resultados. As áreas as quais
esse método pode ser aplicado são inúmeras, limitadas apenas à imaginação de quem está o
empregando, que deverá demonstrar empenho em lidar com significados variados que podem
emergir de seus resultados.

Essa versatilidade já poderia ter sido identificada no exemplo das Eigenfaces, pois o mé-
todo demonstra não só como pode encontrar uma base em baixas dimensões para um conjunto
de rostos, mas como pode lidar com novos dados, conseguindo reconstruir um rosto de fora
do conjunto apenas com as imagens limitadas fornecidas. Em física, mais especificamente em
CFD, essa ferramenta pode servir para uma análise eficiente dos comportamentos espaciais e
sua relação temporal, visto que uma Decomposição Ortogonal Própria pode desacoplar essas
dimensões com comportamentos antes complicados de se analisar por vias tradicionais. Além
das aplicações físicas, do ponto de vista computacional, esse método demonstra interessante
capacidade em reduzir a complexidade e dimensionalidade dos dados a qual ele foi empregado,
correspondendo à intenção original que deu origem ao mesmo, pois como visto anteriormente,
ele pode representar uma redução de até 82% no tamanho de armazenamento de uma simulação,
um resultado significativo levando em consideração a quantidade de espaço e processamento
empregado em uma rotina de análise do mesmo.

É importante destacar que, apesar de suas características importantes para qualquer área
que lide com análise de dados, o método possui sim, limitações. Como verificado no exemplo
das Eigenfaces, mudanças não muito expressivas nos ângulos de limitação [13] podem render
identificações errôneas de rostos. No exemplo do simples escoamento, apesar de pequenas as
diferenças entre o conjunto original e sua reconstrução [21], essas podem representar alguma
característica importante do comportamento do escoamento, e devem ser descartadas com cui-
dado. Para lidar com essas limitações, caberá ao indivíduo a qual o está o aplicando cuidado e
garantia de que o mesmo se apropriou o bastante do contexto da aplicação para evitar cair no
encantamento cego pelas vantagens as quais esse método apresenta.

21

Referências
1. Y.C. LIANG, H.P. LEE, S.P. LIM, W.Z. LIN, K.H. LEE, and C.G. WU. Proper orthogo-

nal decomposition and its applications—part i: Theory. Journal of Sound and Vibration,
252(3):527–544, 2002.

2. Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent de-
velopments. Philosophical transactions of the royal society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.

3. Matthew A Turk and Alex P Pentland. Face recognition using eigenfaces. In Proceedings.
1991 IEEE computer society conference on computer vision and pattern recognition, pages
586–587. IEEE Computer Society, 1991.

4. Jin-Chun Wang, Xin Fu, Guo-Ping Huang, Shu-Li Hong, and Yuan-Chi Zou. Application
of the proper orthogonal decomposition method in analyzing active separation control with
periodic vibration wall. International Journal of Turbo & Jet-Engines, 36(2):175–184, 2019.

5. Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–
572, 1901.

6. Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

7. L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human
faces. J. Opt. Soc. Am. A, 4(3):519–524, Mar 1987.

22

