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Resumo

Este trabalho de conclusao de curso traz um estudo sobre o uso de um dos métodos de Decom-
posicao Ortogonal Propria existentes, a SVD, como ferramenta para a analise de escoamentos
obtidos por simulagoes de fluidos. Aplicou-se o algoritmo em um conjunto correspondente a
uma simulacao de 1499 frames de um campo de densidade de um escoamento, que possibilitou
o estudo do comportamento de suas estruturas espaciais com relacao a dimensao temporal.
Também foi possivel, a partir das matrizes retornadas pelo método, realizar uma redugao sig-
nificativa de sua complexidade, chegando a 82%.
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1 Introducao

A Decomposicao Ortogonal Prépria, DOP, ou POD em inglés, é um termo guarda-chuva
que descreve um conjunto de métodos de analise de dados baseado na sua fatoragdo em con-
juntos de autovalores e autovetores. Esse conjunto, composto pela Anélise de Componentes
Principais (PCA), a Decomposi¢ao de Karnuhen-Loeve (KLD) e a Decomposigao em Valores
Singulares (SVD) (1), nem sempre foi ou é entendido como tal, apesar da extrema similaridade
de seus métodos, visto que cada um deles foi independentemente desenvolvido ao longo dos
séculos XIX e XX, sendo o SVD o mais antigo deles, tendo sido estabelecido para matrizes
reais em 1870 por Beltrami e Jordan (1).
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Figura 1: PCA, KLD e SVD como trés métodos da POD.
Fonte: Elaborada pelo autor.

A utilidade dos métodos de POD se estende a intimeras areas das ciéncias no geral, sendo
o PCA o mais famoso dos trés, com uso que vai desde, por exemplo, estudo de amostras fosseis
(2), até o estudo da variacdo de estados de temperatura e pressio de dados meteorol6gicos
(2), sendo aplicado na reducdo da dimensionalidade de dados de muitas dimensdes. Em 1991,
Matthew Turk e Alex Pentland introduziram um método de identificacao de rostos baseado
na decomposicao de um conjunto de faces nas que ficaram bem conhecidas como “Eigenfaces”
(3), um espago de autovetores usados como base para comparagao de projegoes entre rostos do
conjunto original e rostos os quais se desejava identificacao.

Apesar de ser aplicado em varias areas, é em dindmica de fluidos computacional que as
PODs encontram grande utilidade, sendo inclusive usualmente associadas a essa area. Aqui, as
PODs sao aplicadas na decomposicao de complexos campos de velocidade e densidade, sejam
de simulacoes, sejam de dados reais, em conjuntos de autofunc¢oes deterministicas, podendo
inclusive ser usadas para desacoplar a dimensao espacial da temporal de um conjunto de dados
(4). Baseando-se nessa tltima aplicagdo, este projeto teve como objetivo estudar a aplicagao
de um dos métodos de POD, a SVD, em alguns conjuntos de dados de simulagoes de fluidos.






2 Materiais e Métodos

2.1 A decomposicao SVD

A Decomposicao em Valores Singulares, ou SVD, é, como descrito anteriormente, um
método antigo de fatoracao de matrizes. Dada uma matriz M real, de tamanho n x m, sua
decomposi¢ao SVD tera o seguinte formato:

M=Uxv" (1)
A qual:

« U: Matriz n x n a qual suas colunas sdo os autovetores de M M7, também chamados de
vetores singulares a esquerda

« V: Matriz m x m a qual suas colunas os autovetores de M* M, também chamados de
vetores singulares a direita

e X Matriz n X m a qual suas entradas diagonais sao as raizes quadradas dos autovalores
nao nulos de MTM ou M M7, também chamadas de valores singulares.

Essas trés submatrizes, por sua vez, possuem inimeras interpretacoes, geralmente depen-
dendo do contexto a qual a decomposigao foi aplicada. Uma interpretagdo comum, no contexto
o qual M ¢é uma transformacao linear, ¢ que essas trés submatrizes sao uma fatoracao da
transformacao original em trés operacoes elementares: uma rotacao no subespaco de V', um
dimensionamento por Y, e uma rotacao no subespaco de U.
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Figura 2: Sub-transformagoes de M.
Fonte: https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

No contexto deste trabalho, a decomposicao SVD sera aplicada a amostras de campos,
sendo eles escalares ou vetoriais, da forma F(x,t) representando o escoamento de um fluido
em um intervalo de tempo e dominio espacial especifico, chamado de snapshot. Considerando
um conjunto de dados de um escoamento no dominio [0, z] x [0, y] x [0, ¢], discretizados em um
video de dimensoes (n,m, f), sendo n e m a quantidades de elementos em x e y, e f o nimero



de frames em ¢, para aplicarmos a decomposi¢ao nesse conjunto, devemos primeiro condensar
as dimensoes espaciais discretizadas de x e y em um vetor de apenas uma dimensao. Tendo
cada frame t; condensado em um vetor de tamanho n x m, podemos empilhar esses vetores
coluna seguidamente em uma matriz M, que terd enfim um tamanho (h, f), sendo h = n x m.

M= |ty ti ... tg (2)

Com o nosso conjunto de dados no formato de uma matriz comum, a decomposicao pode
enfim ser feita. As trés submatrizes terdo o seguinte formato:

M=U(x)-%- V() (3)

Em particular, a SVD desempenhara um papel além de apenas fatorar essa matriz de
dados: ela desacoplara as dimensoes temporal e espacial (4), as quais serdo representadas pelas
matrizes U e V7 respectivamente. Nesse caso, a matriz U serd composta pelos f autovetores
coluna espaciais, e a matriz V7 serd composta pelos f autovetores coluna transpostos temporais:
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Se traduzindo em uma combinacdo linear dos produtos dos varios elementos de U e V7,
com os valores singulares de ¥ como coeficientes:
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to tl tf = 01 Uy ‘|‘+0’f Uf (5)

Em relacao a essas matrizes, ¢ comum que surja uma duvida importante: Se a matriz X é
composta pela raiz quadrada dos autovalores de M7 M, os quais sdo os mesmos autovalores de
MMT, e considerando que essas duas matrizes podem possuir postos diferentes se M for uma
matriz retangular, como esses autovalores sao os mesmos se uma tem mais autovalores que a
outra? A resposta para isso é simples: Apenas os autovalores até o menor posto entre as duas
matrizes sao relevantes, o resto dos autovalores sao nulos.

Isso pode inclusive ser verificado, resguardados os limites numéricos do contexto o qual
o método esta sendo aplicado, pela progressao do valor dos autovalores, do mais relevante ao
menos relevante, que usualmente segue uma progressao semelhante a %, como no exemplo da
figura 3, retirado da decomposicao de um conjunto de dados especifico.
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Figura 3: Progressao do autovalores.
Fonte: Elaborada pelo autor.

Como pode ser verificado acima, a quantidade de autovalores proximos de zero é muito
grande. Essa caracteristica é crucial para a utilidade desses métodos de POD, pois a partir
dela pode-se construir um subespago de complexidade muito menor se comparado ao subespago
original.

No exemplo da figura 3, se realizarmos uma soma dos autovalores até que essa soma
totalize o valor de 99%, chegamos ao seguinte resultado presente na figura 4.

Contribuigao dos autovalores
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Figura 4: Autovalor limite a qual a soma dos anteriores corresponde a 99% dos dados.
Fonte: Elaborada pelo autor.

Apenas 129 autovalores correspondem a 99% dos dados. Essa quantidade é aproxima-
damente 6,79% do total. Esse dado constitui uma das principais aplica¢oes das POD, que
é a reducao da complexidade do problema, pois sabendo-se que essa quantidade pequena de
autovalores corresponde a esse quase total valor dos dados, seleciona-se apenas essa quantidade
para analise e reconstrucao dos mesmos.
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Sendo n, nesse caso, a quantidade de autovalores desejada para reconstrucao do espaco.

2.2 PCA
2.2.1 A teoria

O método PCA ¢ outra abordagem interessante da decomposi¢ao ortogonal, sendo equi-
valente ao SVD, porém vindo de um contexto diferente. Apesar de ter sido inventada inde-
pendentemente por Hardold Hotelling em 1933 (5), o qual cunhou seu nome, o método foi
originalmente derivado por Karl Pearson (6) em 1901, como um andlogo do Teorema dos Ei-
xos Principais, que descreve um conjunto de linhas ortogonais que cruzam um elipsoide ou
hiperboloide como sendo seus “eixos principais”.

Assim como o teorema descrito acima, a ideia do método PCA é encontrar os “compo-
nentes principais” de um conjunto de dados abstrato, sendo estes as dire¢oes, ortogonais entre
si, as quais os dados tem a maior projecao. Essa ideia pode ser traduzida geometricamente no
ato de procurar as retas principais que passam “pelo meio” da nuvem de dados.

Eixos principais de um conjunto de dados abstrato

o Dados
--- Elipsoide que contém os dados
W Primeiro eixo principal
= Segundo eixo principal

0.4

02

Figura 5: Eixos principais de um conjunto de dados.
Fonte: Elaborada pelo autor.

Assim como na SVD, sabendo as dire¢bes com a maior projecao a calculados pelo método,
é possivel calcular também qual a porcentagem de sua contribui¢cao nos dados originais, sendo
ela a contribuicao do componente de interesse dividido pela soma da contribuicao de todos
os componentes. Sabendo essas porcentagens, conseguimos ordenar as maiores contribuigoes,
nos permitindo definir quais sdo os componentes mais e menos significativos, que por sua vez
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também permitem uma filtragem semelhante ao apresentado anteriormente, que reconstroi os
dados em menos dimensoes.

Um passo a mais existente nas aplicacoes de PCA, além da filtragem, é da rotacao do
conjunto de dados na direcao das componentes principais, para que os eixos de referéncia
coincidam com os mesmos, e a andalise dos dados seja facilitada.

2.2.2 A dedugao do método PCA 1D

Usemos como exemplo o caso da projecao em uma dimensdao. Supondo que queiramos
projetar um conjunto de dados de p dimensoes em uma reta sé6 que passe a partir da origem
“pelo meio” exato desses dados, representada pelo vetor unitario w. A reta que melhor se
encaixara nesse casos serd a reta a qual as distdncias entre ela e cada ponto serd a minima (que
também significa que serd a reta a qual a projecdo dos dados na mesma serd maxima). Ou
seja, temos que dar um jeito de minimizar a média das distancias ponto-reta de todos os dados
(também conhecida como Erro Quadréatico Médio):

min( MSE(wW) ) = min( zj: |12 — (% - @)w||*) (7)

n i=1
A partir dessa minimizacao descobriremos qual deve ser a direcdo da reta que cumpre
esses requisitos. Abrindo o termo interno do somatério acima, temos:

Que, no MSE, é

— 1 " — — — —» — —
MSE(W) = —( 3 & - & — (& - @) ) leﬂﬁzll2 > (@ -w)?) (9)
i=1 i=1
Para que o MSE seja minimizado, a somatodria das projegoes na reta deve ser maximizada.
Reescrevendo a mesma como:

n n
S (@ @) = (235 @) 4 Var # - 0] (10)
i=1 i

Como a média da soma dos dados ¢é zero, entao a média das proje¢oes também sera zero,
portanto, s6 sobra a variancia a ser maximizada. Sendo assim, encontrar a reta que passa “pelo
meio” dos dados significa encontrar a reta a qual hd a maximizacao da variancia da projegdo
dos dados nessa reta.

Basta agora maximizarmos a variancia das proje¢des para encontrar a reta. Para facilitar
na visualizagdo, facamos os calculos na forma matricial, empilhando os dados Z; em uma matriz
x de dimensoes n X p. A varidncia, como visto acima, pode ser escrita entao como:

1 n
Var| ;- @] = 0> = =) (& - 0)* (11)
[t
~(xw)(xw) = ! “wixlxw (12)
n n
T
=Wy = wlvw (13)
n



Para que a maximizacao, precisamos garantir que ela resultard em um vetor w tal que
ele serd unitario, pois essa é uma das condi¢oes definidoras do nosso problema. Para que essa
garantia seja feita, introduziremos o uso de um multiplicador de Lagrange A associado a uma
restricio w!w = 1 que junto com o problema original constituird um novo objeto, que ai sim
sera maximizado:

Lw,\) =w/vw — A(wl'w — 1) (14)
Derivando parcialmente:
oL
E wliw —1 (15)
oL
T 2vw — 2\w (16)
Igualando as duas derivadas a zero para encontrar os pontos extremos, temos:
wiw=1 (17)
VW = AW (18)

Que nos mostra uma coisa muito importante. A reta que define a varidncia maxima
das projecoes é a reta definida por um autovetor da matriz de covaridncia v, no caso, aquele
associado ao maior autovalor. Portanto, basta encontrar os autovalores e autovetores de v que
calcularemos o componente principal desejado dos dados.

A componente principal calculada resolvera o caso para projecao em uma dimensao, porém
esses resultados nao se restringem a apenas isso. Sendo a matriz v uma matriz de covarian-
cia, ela é simétrica e positiva, nos dizendo que todos seus autovetores serdo ortogonais com
autovalores positivos. Cada autovetor serd uma componente principal dos dados originais.

2.3 Aspectos Computacionais

Como visto anteriormente, alguns passos devem ser seguidos para se obter uma imple-
mentagao de SVD funcional:

1. Calcular MTM.
2. Calcular MM7T.
3. Calcular os autovalores e autovetores de 1.
4. Calcular os autovalores e autovetores de 2.

5. Ordenar os autovalores e autovetores calculados por maior relevancia e dispo-los em U,
YeVT

Poderia ter-se implementado cada passo numericamente com seus devidos métodos ja
bem conhecidos, porém isso envolveria tempo gasto de maneira desnecessaria, podendo inclu-
sive resultar em uma aplicacao lenta, visto que as devidas otimizagoes estado-da-arte muito
provavelmente nao seria usadas. Como o objetivo do projeto era de se estudar a aplicacao de
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PODs, optou-se por usar uma implementacao ja pronta, presente na biblioteca numpy, dentro
do moédulo de algebra linear linalg.

# Como importar svd
from numpy.linalg import svd

Seu uso se da da seguinte maneira:

# Como importar svd
U, Sigma, Vt = svd(M)

Coloca-se uma matriz M, a qual se deseja fazer a decomposicao SVD, e recebe-se as trés
matrizes oriundas da decomposi¢do. Um passo a mais no seu uso que acelera os calculos das
trés matrizes, visto que muitas vezes estaremos lidando com matrizes de tamanho consideravel,
é de atualizar a variavel full _matrices, que por padrao é True, para Fualse. Essa atualizacao
fard com que a funcao evite calcular todos os autovalores e autovetores da decomposi¢ao, ou
seja, ira calcular apenas aqueles até o niimero de autovalores nao-nulos, definidos pelo menor
posto da matriz original.

# Como importar svd
U, Sigma, Vt = svd(M, full matrices = False)

Além da biblioteca numpy, também foram usadas nesse projeto as bibliotecas pandas e
matplotlib.pyplot, para importacao e plotagao dos resultados, respectivamente.

# Importando pandas e matplotlib.pyplot
import pandas as pd
import matplotlib.pyplot as plt

Usando-se dessas bibliotecas, pode-se enfim desenvolver um procedimento para tratar os
dados desejados. O procedimento segue a simples ordem:

1. Recebe-se o conjunto de imagens o qual deseja-se analisar em um array.
2. Achata-se as imagens em vetores coluna unidimensionais, empilhando-os em uma matriz.

3. Aplica-se a decomposicao SVD.

Um exemplo de programa que realiza esses passos é:

# Importacao dos dados com pandas
rawdata = pd.read_csv( )

# Conversao dos dados crus em um np.array
data = np.array(rawdata)

# Decomposicao SVD pelo numpy
U, S, Vt = svd(data_d, full matrices = False)

A partir da decomposicao, pode-se escolher que direcao tomar com as informagoes rece-
bidas nas trés submatrizes. Pode-se tentar, por exemplo, reconstruir uma imagem de fora do
conjunto original a partir dos autovetores obtidos.

Sendo I uma imagem desconhecida e £ = V7T a matriz do auto-espaco calculado do
conjunto de imagens, a reconstrucao dessa imagem é feita de seguinte maneira:
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1. Projetamos a imagem desconhecida no auto-espago gerado de forma a obter um vetor
com cada entrada sendo os coeficientes de projegao:

Q=1IE" (19)

2. Multiplicamos esses coeficientes por cada autovetor do auto-espago, gerando assim a com-
binagao linear dos mesmos:

I'=QFE (20)

No caso acima, quanto mais autovetores escolhermos, melhor sera a reconstrugao, apesar
de nao necessariamente perfeita. Pode-se também tentar identificar uma imagem presente no
conjunto por meio dos autovetores. Para realizar essa comparacao, devemos primeiro calcular
o vetor com os coeficientes da proje¢do da imagem desconhecida no auto-espago calculado. O
vetor, da forma:

Q= |ws (21)

Wi

Devera ser subtraido dos vetores das projegoes de cada imagem original do conjunto, da
maneira:

D, = |2 - (22)

A menor distancia corresponderd a imagem mais parecida, porém nao necessariamente
corresponderd a uma imagem necessariamente igual. Podemos ainda definir uma tolerancia,
para qual imagens com distancia abaixo de certa tolerancia T' corresponderao a mesma pessoa
da imagem desconhecida, porém para os fins desse projeto, isso nao serd feito.

Caso desejemos fazer uma filtragem por autovalores relevantes, e por exemplo, reconstruir
o conjunto com menos elementos, uma aplicacdo que pode economizar espago de memoria,
deveremos seguir os passos seguintes:

1. Calcula-se os autovalores elevando os elementos de ¥ ao quadrado.
2. Seleciona-se a quantidade de autovalores significativos desejados.

3. Reconstroéi-se os dados a partir desse nimero inferior de autovalores.

# Filtragem dos autovalores
s =0
m =0
percent = 0.99
while (s <= percent):
s = np.sum(contribs[:m])
m += 1
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Para a reconstrucao, usou-se duas fungoes auxiliares. A primeira, normalize, renormaliza
a imagem dentro de um intervalo especificado. A segunda to_image, converte uma imagem
para o intervalo de um inteiro sem sinal, que é o intervalo de [0,255], intervalo usado para a
atual codificacao de imagens:

#Funcoes uteis
def normalize(img : np.ndarray, min, max):
’?’Function that converts an image to the given desired range.
return ((img - np.min(img))/(np.max(img) - np.min(img)))*(max -
min) + min

def to_image (img):
return normalize (img, 0, 255).astype(np.uint8)

Que enfim sao aliadas na reconstrucao do conjunto:

# Reconstrucao do conjunto
def rebuild_frame (U, Sigma, Vt, frame, slice):
proj2 = np.matrix(U[frame, :]) * np.matrix(np.diag(Sigma) [:,
slicel)

return to_image(proj2 * np.matrix(Vt[:slice, :]))

2.4 O Classico Problema das Eigenfaces

Como teste inicial desse algoritmo, resolveu-se um classico problema, proposto inicial-
mente por Sirovich e Kirby em 1987 (7), e posteriormente aprimorado por Turk e Pentland em
1991. A partir do desejo de se encontrar bases de dimensao baixas de imagens de rostos, Siro-
vich e Kirby haviam proposto o uso de PCA para a formagao de uma base a partir de conjunto
pré-coletado dos mesmos, base a partir da qual se reconstruiria esse mesmo conjunto por meio
de combinacoes lineares de seus elementos, como mostrando anteriormente. Turk e Pentland
teriam enfim, em 1991, apresentado uma proposta consistente de deteccao de rostos por meio
dessa técnica, que ficou entao conhecido como o “Método de Eigenfaces para reconhecimento
de rostos”. O método consiste, de maneira resumida, em:

1. Escolher um conjunto de rostos que serd base para essa identificagao.

2. Realizar a decomposi¢ao ortogonal desse conjunto, obtendo-se a matriz com os autovetores
dos rostos, a base dos “auto-rostos”.

3. Classificar cada rosto do conjunto original projetando-o na base de autovetores. O vetor
resultante da projecao nessa matriz sera a “identificagdo” desse rosto.

4. Obtendo-se essa base com as identificacoes, basta agora calcular o vetor da projecdo do
rosto que deseja se identificar. Com essa identificacao, realiza-se uma comparacao, que
pode ser um simples calculo da distdncia entre esses dois vetores, entre a identificacao
calculada e as identificagoes de cada rosto da base. A melhor comparacao correspondera
ao rosto a qual desejava-se identificar.
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Para testar esse método, usou-se como base de dados uma amostra de imagens de rostos
disponibilizada, na época, no site da Universidade de Boston. Essa base de dados continha fotos
de rostos de 38 pessoas diferentes, cada uma com, em média, 64 fotos de angulos de iluminacao.
Para testar a possibilidade de reconstrucao de rostos de fora do conjunto, escolheu-se apenas
30 dessas 38 pessoas para os calculos.

Figura 6: Alguns dos rostos disponiveis no conjunto de dados.
Fonte: Universidade de Boston.

Figura 7: Cada rosto possui sub-fotos de dngulos de iluminacao diferentes.
Fonte: Universidade de Boston.

Aplicando a SVD nesse conjunto, obtemos a matriz com os “auto-rostos”, cada um dis-
posto como uma coluna da matriz.

Primeiro autorosto Segundo autorosto Terceiro autorosto Quarto autorosto

Figura 8: Primeiros quatro auto-rostos.
Fonte: Elaborado pelo autor.
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Podemos entao testar se conseguimos reconstruir uma imagem fora do conjunto original
apenas com esses auto-rostos.

Figura 9: Rosto de fora do conjunto.
Fonte: Universidade de Boston.

Dado o rosto 9 de fora do conjunto, calculando sua reconstrucao pelo método demonstrado
anteriormente, obtemos o resultado representado pela figura 10.

Original n=10 h =990 h=2282

Figura 10: Reconstrugdao com n autovetores.
Fonte: Universidade de Boston.

Testemos agora o método de identificacdo de rostos, projetando um rosto de fora do
conjunto. Para algumas imagens escolhidas, obteve-se os seguintes resultados, representados
pelas imagens 11 e 12.

Rosto escolhido Rosto mais préximo calculado

e

Figura 11: Exemplo de identificacdo que deu certo.
Fonte: Elaborado pelo autor.
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Rosto escolhido

Rosto mais préximo calculado

Figura 12: Exemplo de identificacdo que deu errado.
Fonte: Elaborado pelo autor.

-

E possivel verificar pelo segundo exemplo que nem todo rosto sera corretamente identi-
ficado. Se rodarmos esse algoritmo para todo o conjunto de rostos, poderemos verificar quais
foram identificados corretamente.

Predicéo do Algoritmo

Pessoa

40 50 60

EEE

Figura 13: Acertos e erros do algoritmo.
Fonte: Elaborado pelo autor.

Na figura 13, verde corresponde aos rostos corretamente identificados, e amarelo os iden-
tificados erroneamente. Pode-se verificar assim as areas do conjunto as quais o algoritmo falha,
que por sua vez correspondem a angulos de iluminacao os quais produzem quantidade signifi-
cativa de sombra sobre o mesmo.
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3 Resultados

3.1 A Aplicagao em Escoamentos

Para demonstrar a aplicacao das PODs em escoamentos, usou-se um conjunto de dados
gerado independentemente. Esse conjunto constitui em uma simulagao do escoamento de um
fluido, representado por frames de um campo escalar correspondente a sua densidade, a qual
¢ armazenada em cada pixel da imagem. Essa simulagdo possui 1500 frames de dimensao
(100, 100). E importante pontuar, antes de continuar com esse estudo, que todas as imagens
da simulagao aqui mostradas terao seu valor normalizado no intervalo [0.0,1.0], mas nao neces-
sariamente correspondem a valores dentro desse intervalo.

Frame 0 Frame 50 Frame 350 Frame 850
0 ]

]

0 25 30 75 0 25 50 75 0 25 50 75 0 25 50 75

Figura 14: Simulacao do escoamento de um Fluido.
Fonte: Elaborado pelo autor.

Primeiro, achatou-se os frames em vetores de 10000 entradas, e os empilhou em colunas,
rendendo uma matriz (10000, 1499). Aplicando a decomposi¢do SVD nesse conjunto, obteve-se
as trés submatrizes, com as seguintes dimensoes:

e U : (10000, 1499)
e 3 (1499, 1499)
« VT : (1499, 1499)

Como descrito anteriormente, U corresponde aos autovetores espaciais, > aos autovalores,
e VT aos autovetores temporais. Seus autovalores normalizados tem as seguintes contribuicoes,
representadas na figura 15.
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Contribuigao dos autovalores
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Figura 15: Porcentagem da contribuicao dos autovalores.
Fonte: Elaborado pelo autor.

Cada um desses autovalores corresponde aos seguintes autovetores, em ordem de signifi-
cancia.

1° autovetor 2° autovetor 3° autovetor 4° autovetor

T | B |

64.6%

0 20 40 60 80 0 20 40 60

5° autovetor 6° autovetor 7° autovetor 8° autovetor

40 60 80

Figura 16: Primeiros e mais relevantes autovetores e suas contribuigoes.
Fonte: Elaborado pelo autor.

Analisando o conjunto, representado por alguns modos iniciais em 16, nota-se uma carac-
teristica peculiar: O modo de maior densidade, correspondente ao primeiro autovetor, possui
valores pequenos no meio, aonde a estrutura da fumaga mais se concentrava, e valores grandes
fora dessa regiao. Fora de contexto, esse resultado nao deveria fazer sentido, pois se cada au-
tovetor acima corresponde aos modos de maior densidade, e a densidade deve possuir valores
positivos, por que o modo de maior densidade possui essa inversao? Essa duvida bem moti-
vada ¢é respondida analisando o primeiro modo conjuntamente com seu respectivo autovetor
temporal.
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1° modo espacial
0
204 I
60 4

80

-0.02

—0.04

—0.06

—0.08

—0.10

—0.12

Intensidade

—0.005 4

—0.010 1

—0.015 1

—0.020 1

—0.025 4

—0.030 1

Variagéo do 1° modo espacial no tempo

0.000

0 200 400 600 800 1000 1200 1400
Frame

Figura 17: Comparacao entre o primeiro modo espacial e sua “variagao” no tempo.

Fonte: Elaborado pelo autor.

Essa comparagao levanta um ponto importante desta andlise a qual deve ser sempre
praticado: o estudo dos modos espaciais deve vir sempre acompanhado dos modos temporais.
No exemplo da figura 17, verificamos que a variacao temporal do primeiro e mais “energético”
modo tem valores negativos ao longo de toda a simulacdo, que ao serem multiplicados pelo

modo espacial, invertem seu valor.

2° modo espacial

o

5

0 20 40 60 80

—0.05

—0.10

Intensidade

Variagdo do 2° modo espacial no tempo

0.00 1

—0.01

—0.02 4

—0.03

—0.04 4

200 400 600 800 1000 1200 1400
Frame

oA

Figura 18: Comparacao entre o segundo modo espacial e sua variagdo no tempo.

Fonte: Elaborado pelo autor.

3° modo espacial

0.075

0.050

0.025

0.000

—0.025

—0.050

—0.075

—=0.100

Intensidade

Variagéo do 3° modo espacial no tempo

—0.02 q

—0.04 1

—0.06 1

0 200 400 600 800 1000 1200 1400
Frame

Figura 19: Comparacao entre o terceiro modo espacial e sua variagao no tempo.

Fonte: Elaborado pelo autor.
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Se realizarmos o procedimento de filtragem procurando pela quantidade de autovalores
correspondente a 99%, obtemos o resultado representado pela figura 20

Contribuigao dos autovalores

70
° —— Autovalor 86 de 1499
60
50 4
40 4
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30 1
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0 200 400 600 800 1000 1200 1400
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Figura 20: Autovalor limite correspondente a 99% do conjunto.
Fonte: Elaborado pelo autor.

Pelo que foi calculado, 86 autovalores correspondem a 99% do conjunto. Se reconstruirmos
um frame qualquer com apenas essa quantidade de autovalores, obtemos os seguintes frames
na figura 21.

Original

T

Reconstrugdo das matrizes da decomposigéo Diferenga absoluta entre a original e a reconstrugéo
0 0

¥

0.6

0.5

0.4

03

0.2

0.1

Figura 21: Reconstrugdo de um frame qualquer com 86 autovalores.
Fonte: Elaborado pelo autor.

E possivel verificar por 21 que a reconstrucio conseguiu obter, de fato, uma representacio
muito parecida com o frame original. Isso pode ser respaldado pela ordem da diferenca absoluta
entre o original e a reconstrucao, que é pequena se comparada aos valores de densidade do frame.

Usando o exemplo acima para calcular a eficiéncia de compressao desse algoritmo, consi-
derando que se tratava de uma matriz de tamanho (10000, 1499) a qual selecionou-se apenas
86 autovalores, o necessario para reconstruir o conjunto sera:

. U (10000, 86)
. ¥ (86)
o VT (1499, 1499)
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Somando essa quantidade, obtemos 3.107.087 ntimeros a serem guardados, que se compa-
rados a quantidade original, 17.238.500, representa uma reducao de 81,97% no espago armaze-
nado.
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4 Conclusao

Os métodos de POD configuram uma importante e poderosa ferramenta de analise de
dados. Sua caracteristica de aplicacdo a posteriori, ou seja, diretamente a um conjunto de
dados ja obtido, configura uma interessante versatilidade, pois para o método, pouca ou ne-
nhuma diferencga fazem as restri¢oes e regras analiticas inerentes ao comportamento analisado,
as quais podem inclusive serem reveladas a partir da andlise dos resultados. As areas as quais
esse método pode ser aplicado sao intimeras, limitadas apenas a imaginacao de quem esta o
empregando, que devera demonstrar empenho em lidar com significados variados que podem
emergir de seus resultados.

Essa versatilidade ja poderia ter sido identificada no exemplo das Eigenfaces, pois o mé-
todo demonstra nao s6 como pode encontrar uma base em baixas dimensoes para um conjunto
de rostos, mas como pode lidar com novos dados, conseguindo reconstruir um rosto de fora
do conjunto apenas com as imagens limitadas fornecidas. Em fisica, mais especificamente em
CFD, essa ferramenta pode servir para uma andlise eficiente dos comportamentos espaciais e
sua relagdo temporal, visto que uma Decomposicao Ortogonal Prépria pode desacoplar essas
dimensbes com comportamentos antes complicados de se analisar por vias tradicionais. Além
das aplicacoes fisicas, do ponto de vista computacional, esse método demonstra interessante
capacidade em reduzir a complexidade e dimensionalidade dos dados a qual ele foi empregado,
correspondendo a intencao original que deu origem ao mesmo, pois como visto anteriormente,
ele pode representar uma redugao de até 82% no tamanho de armazenamento de uma simulagao,
um resultado significativo levando em consideracao a quantidade de espago e processamento
empregado em uma rotina de analise do mesmo.

E importante destacar que, apesar de suas caracteristicas importantes para qualquer area
que lide com anélise de dados, o método possui sim, limitacoes. Como verificado no exemplo
das Eigenfaces, mudangas ndo muito expressivas nos angulos de limitagao [13] podem render
identificagoes erroneas de rostos. No exemplo do simples escoamento, apesar de pequenas as
diferencas entre o conjunto original e sua reconstrucao [21], essas podem representar alguma
caracteristica importante do comportamento do escoamento, e devem ser descartadas com cui-
dado. Para lidar com essas limitagoes, cabera ao individuo a qual o estd o aplicando cuidado e
garantia de que o mesmo se apropriou o bastante do contexto da aplicagao para evitar cair no
encantamento cego pelas vantagens as quais esse método apresenta.
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